

Document Number: 990-02101 Rev. 1.21 10/2017 contact@lansitec.com

General Description

Lansitec precision platinum temperature sensor is based on the advanced LoRa modulation and powered by lithium battery with 6-year operation time. It is cost effective LoRaWAN end device for a variety of application. It's long operation time offers low maintenance and is ideal for industry use. Sensor work mode can be adjusted via LoRa network.

Lansitec sensors family is fully compatible and plug & play for LoRaWAN network operation.

Lansitec sensors can also work with Lansitec Wireless Data Transfer Unit (P/N: 100-00175) for low cost deployment. Please contact us for further information.

Applications

- Busway temperature monitor
- Weather station
- Heating
- Ventilation & air conditioning systems
- Smart Agriculture
- Building automation

Key features

- Powered by lithium thionyl chloride battery: 5 years of operation for 1 uplink 5 minutes.
- Extended industrial operating temperature:
- -40°C to +85°C.
- Accuracy:
 - ±1°C typically from -200°C to +200°C.
- LoRaWAN compatible:

Class A, uplink rate programmable from 30 seconds to 24 hours.

- Change uplink cycle via wireless, configurable by server via downlink command
- Operating frequency bands (Option at order):
 - 470MHz, < 50mW radiated power
 - 868MHz, < 25mW radiated power
 - 920MHz, < 25mW radiated power

1. Product specifications

The tables below give the electrical specifications and performance of the temperature and humidity measurement.

Protocol	LoRaWan1.0.2	
Frequency	CN470, EU868, US915, AS923, CLAA	
	SF=7 ≤ -126dBm	
Sensitivity	SF=10 ≤ -136dBm	
	SF=12 ≤ -142dBm	
	30uA@sleep mode	
Operating Current	Max 138mA@17dBm	
Temperature Range	-200~200℃	
Accuracy	±1℃	
Standby Time	6 years @25℃ 17dBm 5 minutes per transmission	
Operating Temperature	-40~+85°C	
Storage Temperature	-55 ~ +85℃	
Operating Humidity	5%~95%	
On/Off	Support	
Sensor Quantity	4, external, cable length is optional	
Antenna	External	
Dimension	Aluminum, 76x46x110mm	
Battery	Non-chargeable lithium battery 38Ah	
Communication Distance	>1km in urban area	

Table 1 General electrical characteristic

2. Application Information

2.1 Function

The sensor works in OTAA and Class A mode. DEVEUI, APPEUI and APPKEY are stored in the sensor and is necessary for joining a network. DEVEUI is labeled at the back of the device. APPEUI, APPKEY should be provided by each application. Lansitec will help to configure this before shipping.

After power on and join the Lora network, sensor will send registration message to Application Server(AS). If AS doesn't reply, sensor will retry for 3 times before switching to default mode (periodically report mode). Configuration information of the sensor is included in this registration message for AS to validate.

Sensor starts to work after receiving acceptance response or no AS reply after 3 times registration trial. Temperature will be reported to AS periodically. The duty cycle is configurable by commands from AS. Temperature acquisition and report period is 5 minutes by default.

According to LoRaWAN specification, downlink response time is decided by uplink duty cycle, user should refer the needed response time to choose uplink duty cycle. Detailed downlink and uplink definition are described below.

2.2 Uplink Message

2.2.1 Register

Bytes	1	1	1	1	2	2
Item	TYPE	SMODE	POWER	CFG	TH	CRC

TYPE field

Bit	Name	Value	Description
7~4	ТҮРЕ	0x1	Message type. AS can use it to identify different uplink messages.
3	ADR	0: OFF 1: ON	ADR (Adaptive Date Rate) status
2~0	MODE	0x01~0x07	Current working scheme which should be one of SMODE

SMODE field

Bit	Name	Value	Description
7~0	SMODE	0x01: AU920	Data scheme supported by tracker.

LoRa Platinum Temperature Sensor

	0x02: CLAA	This field is preserved by Lansitec and will be
	0x04: CN470	configured before shipping.
	0x08: AS923	
	0x10: EU433	
	0x20: EU868	
	0x40: US915	

POWER field

Bit	Name	Value	Description
7~3	POWER	0~31	Configured transmit power (dBm)
2~0	Reserved	0x0	Reserved for future use. If MODE is CLAA, it indicates the frequency sweep mode of the tracker: 1: A mode 2: B mode 3: C mode 4: D mode 5: E mode 6: All frequency sweep Refer to CLAA China 470M-510M Band Using network technology requirements for detailed information.

CFG field

Bit	Name	Value	Description
7~4	DR	0~15	Data Rate(DR0~DR15).
3~0	Reserved	0x0	Reserved for future use.

TH field

Bit	Name	Value	Description
15~0	ТН	1~65535	The period of temperature report, unit 10s.

CRC field

Bit	Name	Value	Description
15~0	CRC		CRC16 of previous fields with TYPE bits set to 0, the polynomial is $x^{16} + x^{15} + x^2 + 1$. AS only need
			to compare this data field with the AS stored one
			to judge whether configuration changed.

2.2.2 Periodical temperature and humidity

Bytes	1	1	1	2	2	 2
Item	TYPE	RFU	RSSI	TEMP1	TEMP2	 CRC

TYPE field

Bit	Name	Value	Description
7~4	ТҮРЕ	0x3	Message type, AS can use it to identify different uplink messages.
3~0	TNUM	0x0~0x4	Number of sensor. For example, if TNUM is 0x3, there should be TEMP1, TEMP2 and TEMP3, the whole message length should be 11 bytes.

RFU field

Bit	Name	Value	Description
7~0	RFU	0	Reserved for future use.

RSSI field

Bit	Name	Value	Description
7~0	RSSI	0~160	Received Signal Strength Indication
			(unit: -1dBm)

TEMP1 field

Bit	Name	Value	Description
short	TEMP1	-20000~20000	(unit: 0.01°C)

TEMP2 field

Bit	Name	Value	Description
short	TEMP2	-20000~20000	(unit: 0.01°C)

TEMP number is decided by field TNUM.

CRC field

Bit	Name	Value	Description
15~0	CRC		Same CRC16 as calculated in register message. This
			can be used for server to check if any configuration
			mismatch.

2.2.3 Acknowledge

Bytes	1	1
Item	TYPE	MSGID

TYPE field

Bit	Name	Value	Description
7~4	ТҮРЕ	0xF	Message type, AS can use it to identify different uplink messages.
3~0	RESULT	0: success 1: failure	Process result of any downlink message that need acknowledge

MSGID field

Bit	Name	Value	Desc	ription				
8~0	MSGID	0~255	The	MSGID	field	of	corresponding	downlink
			mess	sage				

2.3 Downlink

2.3.1 Register acceptance

Bytes	1
ltem	ТҮРЕ

TYPE field

Bit	Name	Value	Description
7~4	ТҮРЕ	0x1	Message type, tracker can use it to identify different downlink messages.
3~0	RESULT	0: success 1: failure	Register result, currently the device doesn't distinguish the result, device always take it as success if response received.

2.3.2 Lora configuration

Bytes	1	1	1
Item	TYPE	DR	MODE

TYPE field

Bit	Name	Value	Description
7~4	ТҮРЕ	0x8	Message type, tracker can use it to
			identify different downlink messages.
3	ADR	0: OFF	ADR (Adaptive Date Rate) status

LoRa Platinum Temperature Sensor

		1: ON	
2~0	Reserved	0x0	Reserved for future use. If MODE is
			CLAA, it indicates the frequency sweep
			mode of tracker:
			1: A mode
			2: B mode
			3: C mode
			4: D mode
			5: E mode
			6: all frequency sweep

DR field

Bit	Name	Value	Description
7~4	DR	0~15	Data Rate(DR0~DR15), if ADR is disabled, the device will work on this data rate.
3~0	Reserved	0	Reserved for future use

MODE field

Bit	Name	Value	Description
7~5	MODE	0x1:AU920	Configure mode. Currently the mode
		0x2:CLAA	can't be changed. It should be always
		0x3:CN470	the same with the value reported by the
		0x4:AS923	device.
		0x5:EU434	
		0x6:EU868	
		0x7:US915	
4~0	POWER	0~31	Configure transmit power (unit dBm)

2.3.3 Sensor configuration

Bytes	1	2
ltem	TYPE	TH

TYPE field

Bit	Name	Value	Description
7~4	ТҮРЕ	0x9	Message type, tracker can use it to identify different downlink messages.
3~0	Reserved	0x0	Reserved for future use.

TH field

Bit	Name	Value	Description
15~0	ТН	1~65535	The period of temperature report, unit 10s.

2.3.4 Command request

Bytes	1	1
ltem	TYPE	MSGID

TYPE field

Bit	Name	Value	Description
7~4	ТҮРЕ	0xA	Message type, tracker can use it to identify different downlink messages.
3~0	COMMAND	0x1: register request	Requested command. 0x1 used to request the device to send register message.

MSGID field

Bit	Name	Value	Description
8~0	MSGID	0~255	Server generated sequence number of downlink messages that need MSGID. Tracker will respond ACK with this number, otherwise AS should resend the message.

3. Mechanical structure and Assembly

3.1 Dimension

3.2 Battery installation

Battery holder is inside the sensor. Just insert the 3.6V battery to the holder, the sensor will start work with a default cycle. Please follow steps below when install a new battery.

Step1: Remove the cover.

Step2: Install the battery.

Step3: Reset the device.

Step4: Close and fix the cover again.

Note: Don't inverse the polarity of the battery when insert the holder!!!

3.3 Sensor Fixation

On the back of the housing, there are 4 screw mounting holes which are isolated from inside of the device.

3.4 Battery information

Lithium/thionyl chloride battery with PN ER34615 is used in the sensor, which could operate in -55 to $+85^{\circ}$ C.

4. Ordering Information

LoRa Platinum Temperature Sensor, US915, 1 sensor, 38Ah	100-00159
LoRa Platinum Temperature Sensor, US915 2 sensors, 38Ah	100-00158
LoRa Platinum Temperature Sensor, US915, 4 sensors, 38Ah	100-00182
LoRa Platinum Temperature Sensor, EU868, 1 sensor, 38Ah	100-00169
LoRa Platinum Temperature Sensor, EU868, 2 sensors, 38Ah	100-00168
LoRa Platinum Temperature Sensor, EU868, 4 sensors, 38Ah	100-00176
LoRa Platinum Temperature Sensor, CN470, 1 sensor, 38Ah	100-00178
LoRa Platinum Temperature Sensor, CN470, 2 sensors, 38Ah	100-00177
LoRa Platinum Temperature Sensor, CN470, 4 sensors, 38Ah	100-00179
LoRa Platinum Temperature Sensor, AS923, 1 sensor, 38Ah	100-00181
LoRa Platinum Temperature Sensor, AS923, 2 sensors, 38Ah	100-00180
LoRa Platinum Temperature Sensor, AS923, 4 sensors, 38Ah	100-00162
LoRa Platinum Temperature Sensor, CLAA, 1 sensor, 38Ah	100-01158
LoRa Platinum Temperature Sensor, CLAA, 2 sensors, 38Ah	100-01159
LoRa Platinum Temperature Sensor, CLAA, 4 sensors, 38Ah	100-01160

Please Read Carefully:

Information in this document is provided solely in connection with Lansitec products. Lansitec reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All Lansitec products are sold pursuant to Lansitec's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the Lansitec products and services described herein, and Lansitec assumes no liability whatsoever relating to the choice, selection or use of the Lansitec products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third-party products or services it shall not be deemed a license grant by Lansitec for the use of such third-party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN LANSITEC'S TERMS AND CONDITIONS OF SALE Lansitec DISCLAIMS ANY EXPRESS OR IMPLIEDWARRANTY WITH RESPECT TO THE USE AND/OR SALE OF Lansitec PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIEDWARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWSOF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LANSITEC PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE LANSITEC PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF LANSITEC HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY LANSITEC AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO LANSITEC PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of Lansitec products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by Lansitec for the Lansitec product or service described herein and shall not create or extend in any manner whatsoever, any liability of Lansitec.

Lansitec and the Lansitec logo are trademarks or registered trademarks of Lansitec in various countries.

Information in this document supersedes and replaces all information previously supplied.

The Lansitec logo is a registered trademark of Lansitec. All other names are the property of their respective owners.

© 2015 LANSITEC - All rights reserved

http://www.lansitec.com